
Package: DecomposeR (via r-universe)
October 15, 2024

Type Package

Title Empirical Mode Decomposition for Cyclostratigraphy

Version 1.0.6

Author Sebastien Wouters [aut, cre]

Maintainer Sebastien Wouters <wouterseb@gmail.com>

Description Tools to apply Ensemble Empirical Mode Decomposition
(EEMD) for cyclostratigraphy purposes. Mainly: a new algorithm,
extricate, that performs EEMD in seconds, a linear
interpolation algorithm using the greatest rational common
divisor of depth or time, different algorithms to compute
instantaneous amplitude, frequency and ratios of frequencies,
and functions to verify and visualise the outputs. The
functions were developed during the CRASH project (Checking the
Reproducibility of Astrochronology in the Hauterivian). When
using for publication please cite Wouters, S., Crucifix, M.,
Sinnesael, M., Da Silva, A.C., Zeeden, C., Zivanovic, M.,
Boulvain, F., Devleeschouwer, X., 2022, ``A decomposition
approach to cyclostratigraphic signal processing''.
Earth-Science Reviews 225 (103894).
<doi:10.1016/j.earscirev.2021.103894>.

License GPL-3

Depends R (>= 4.0.0)

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.2.3

Imports graphics, stats, utils, usethis, tictoc, StratigrapheR (>=
1.1.1), grid, hexbin, colorRamps, dplyr (>= 1.0.0)

Suggests EMD, Rssa, astrochron, tidyverse

NeedsCompilation no

Date/Publication 2023-02-02 15:50:04 UTC

Repository https://sewouter.r-universe.dev

1

https://doi.org/10.1016/j.earscirev.2021.103894

2 Contents

RemoteUrl https://github.com/cran/DecomposeR

RemoteRef HEAD

RemoteSha d53047ef9a22ece45e8bb36caf4490526ec7238b

Contents
approx.cor . 3
as.emd . 4
as.pulse . 6
check.emd . 7
condense . 8
DecomposeR . 9
DecomposeR.Datasets . 10
dq.algorithm . 11
extremist . 12
extricate . 13
gzc . 16
gzc.algorithm . 18
gzc.departure . 19
HilbertEnvelope . 21
HilbertTransform . 22
inst.pulse . 23
inst.ratio . 25
InstantaneousFrequency . 27
integrity . 28
is.ratio . 29
is.simp.emd . 30
mode.in . 30
n.extrema . 32
normalise . 33
oscillate . 35
parsimony . 36
pile.down . 38
pile.up . 39
plot_emd . 41
plot_hex . 43
plot_hist . 47
plot_imf . 49
plot_pulse . 51
plot_ratio . 52
PrecisionTester . 54
ratios . 57
repl.out . 57
respace . 58
simp.emd . 60
simple.ssa . 61
symmetry . 62

approx.cor 3

Index 64

approx.cor Correlation of time-series with different sampling rate

Description

Allows to correlate time-series having different sampling rate, if they have a comparable depth or
time scale

Usage

approx.cor(xy1, dt1, xy2, dt2, plot = T, output = T, type = "p", ...)

Arguments

xy1 intensity values for the first data set

dt1 depth or time scale for the first data set

xy2 intensity values for the second data set

dt2 depth or time scale for the second data set

plot whether to plot

output whether to output

type type of points in the plot (see help page of lines() for details)

... additional parameters to feed to the lines() function

Value

a list of correlation ($cor), slope ($slope), intercept ($intercept) (two values for each: interpolation
to fit dt1 and dt2 respectively), and of the xy1 and xy2 values, interpolated for dt1 ($df1) and df2
($df2)

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy.pure <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2)

xy <- xy.pure + rnorm(n, sd = 0.5)

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

4 as.emd

dt.pure <- cumsum(inter_dt)

keep <- runif(length(dt.pure)) < 0.5

xy <- xy[keep]
dt <- dt.pure[keep] + rnorm(sum(keep), -0.2, 0.2)

par(mfrow = c(1,2))

plot(xy, dt, type = "o", pch = 19)

plot(xy.pure, dt.pure, type = "o", pch = 19)

par(mfrow = c(1,1))

out <- approx.cor(xy, dt, xy.pure, dt.pure)

out$cor
out$slope
out$intercept

as.emd Create / Check emd objects

Description

Allows to convert the result of a decomposition into a standard list. The warnings of the is.emd
checking function allow to identify the problems.

Usage

as.emd(
xy,
dt,
imf,
residue = NULL,
ini = NULL,
mode = NULL,
repl = 1,
order = NA

)

is.emd(emd)

Arguments

xy a vector of length n for the original signal at each dt

dt a vector of length n for the depth or time reference

as.emd 5

imf a data.frame or matrix of n rows of the IMFs

residue a vector of length n for the residue of the decomposition

ini an optional vector of length n of the eventual initial Intrinsic Mode Function xy
would be a demodulation of, if it is a demodulation.

mode the mode sequence index to give to each replicated IMFs

repl the id of each replicates. The length of unique(repl) defines the amount of repli-
cates.

order the order of the imf, typically from higher frequency to lower frequency

emd an emd object to check

Value

a list made of $xy (original signal), $dt (depth/time), $m (a matrix of the decomposition), $repl (the
replicate id of each point) and $mode (the mode id of each point).

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

s30 <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1)
s240 <- 2 * sin(t*2*pi/p2)
sn <- rnorm(n, sd = 0.5)

xy <- s30 + s240 + sn

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec <- as.emd(xy = xy, dt = dt, imf = matrix(c(sn, s30, s240), ncol = 3))

plot_emd(dec, pdf = FALSE)

is.emd(dec)

Not run:
dec$xy <- 1
is.emd(dec)
End(Not run)

6 as.pulse

as.pulse Create / Check pulse objects

Description

Allows to convert instantaneous frequency determination results into a single ’pulse’ object. This
is the format generated by inst.pulse (and gzc if output = 2)

Usage

as.pulse(
dt,
f,
a = NULL,
m = NULL,
idt = NULL,
mode = NULL,
repl = 1,
order = NA

)

is.pulse(pulse)

Arguments

dt a vector of length n for the depth or time reference

f a data.frame or matrix of n rows of the instantaneous frequencies

a a data.frame or matrix of n rows of the instantaneous amplitudes

m a data.frame or matrix of n rows of the components from which the frequencies
and amplitudes were computed from

idt data.frame or matrix of n rows of identity tuning: new dt coordinates to remove
the frequency modulation

mode the mode sequence index to give to each replicated IMFs

repl a vector for the number of replicates or a matrix, indicating in which replicate
set each point is

order the order of the imf, typically from higher frequency to lower frequency

pulse a pulse object to check

Value

a list made of $dt (depth/time), $f (instantaneous frequency), $a (instantaneous amplitude) if a is
provided, $repl (the replicate id of each point) and $mode (the mode id of each point).

check.emd 7

Examples

set.seed(42)

n <- 600
dt <- seq_len(n)

p1 <- 30
p2 <- 240

s30 <- (1 + 0.6 * sin(dt*2*pi/p2)) * sin(dt*2*pi/p1)
s240 <- 2 * sin(dt*2*pi/p2)

xy <- s30 + s240

dec <- as.emd(xy = xy, dt = dt, imf = matrix(c(s30, s240), ncol = 2))

plot_emd(dec, pdf = FALSE, style = 1)

pulse <- inst.pulse(dec, last = TRUE, breaks = 200, bins = 40, cut = 10)

is.pulse(pulse)

simp.pulse <- as.pulse(pulse$dt, pulse$f)

str(simp.pulse)

check.emd Check an EMD object

Description

Provides an ensemble of check on the quality of a decomposition presented as an emd object (see
as.emd for more information)

Usage

check.emd(emd, xy = NULL, timelimit = 15)

Arguments

emd an amd object to test

xy the original signal that was decomposed: this parameter is simply to insure
that you are indeed comparing the decomposition to the original signal, and
not cheating by providing the sum of your decomposition

timelimit a time limit for the computation of the greatest common rational divisor. A too
long time may be indicative of a problem, typically depth/time values that are
not rounded adequately.

8 condense

Examples

set.seed(50)

h <- rnorm(n = 1000)

dt <- seq_len(length(h))

alpha <- 0.95

for(i in dt[-1]) h[i] <- alpha * h[i-1] + h[i]

set.seed(42)

em <- extricate(h, dt, nimf = 7, repl = 1, comb = 100, sifting = 4,
factor_noise = 20, unit_noise = "native", speak = TRUE)

Not run:
plot_emd(em, adapt.axis = TRUE)
End(Not run)

check.emd(em, h)

condense Condenses columns of matrix

Description

Condenses columns of a matrix by averaging or summing them. The condensing can be done
partially: a multiple of the repetitions can be averaged or summed to keep some repetitions.

Usage

condense(m, n, fun = "mean")

Arguments

m matrix of repeated signal, each column being a repetition

n the number of repetitions that will be averaged/summed

fun the function to apply to each repetition: "mean" or "sum".

Value

a matrix with n times less columns

DecomposeR 9

Examples

m <- matrix(rep(seq(100, 800, 100), each = 10) + rep(1:10, 8), ncol = 8)

m

condense(m, 4)

DecomposeR DecomposeR: Empirical Mode Decomposition for Cyclostratigraphy

Description

This package provides tools to apply Ensemble Empirical Mode Decomposition (EEMD) for cy-
clostratigraphy purposes. It proposes a new algorithm, that performs EEMD in seconds, a linear
interpolation algorithm using the greatest rational common divisor of depth or time, different algo-
rithms to compute instantaneous amplitude, frequency and ratios of frequencies, and functions to
verify and visualise the outputs.

Details

Package: DecomposeR

Type: R package

Version: 1.0.6 (begin of 2023)

License: GPL-3

Note

If you want to use this package for publication or research purposes, please cite Wouters, S., Cru-
cifix, M., Sinnesael, M., Da Silva, A.C., Zeeden, C., Zivanovic, M., Boulvain, F., Devleeschouwer,
X., 2022, "A decomposition approach to cyclostratigraphic signal processing". Earth-Science Re-
views 225 (103894). <doi:10.1016/j.earscirev.2021.103894>.

Author(s)

Sebastien Wouters

Maintainer: Sebastien Wouters <wouterseb@gmail.com>

10 DecomposeR.Datasets

DecomposeR.Datasets Datasets for Testing DecomposeR

Description

Datasets for testing DecomposeR: the ace dataset is from from Sinnesael et al. (2016), the cip2 and
cip3 data sets are from the signals 2 and 3 of the CIP project (Sinnesael et al., 2019), respectively,
and cip1 was derived from cip1_raw which is a rasterisation of the .tif image provided as signal 1 of
the CIP project. A real case study is also provided, out of ODP 926 in Ceara Rise, limited between 5
& 9 Millions of years ago (Ma): the data sets z13 and z13amp are from Zeeden et al., 2013, and are
respectively the greyscale, and its amplitude modulation for the eccentricity; w17 is from Wilkens
et al., 2017, which proposes a revised splice for magnetic susceptibility; sc97amp is the amplitude
modulation of eccentricity as it was calculated on the magnetic susceptibility by Shackleton &
Crowhurst (1997). Excerpts from the Laskar et al., 2004 solution are further provided from http:
//vo.imcce.fr/insola/earth/online/earth/online/index.php: they are the insolation input
for the CIP1 signal (cip1_imput), and various solutions for precession, eccentricity and obliquity
for given time intervals (in millions of years ago): La04_pre_0_20, La04_ecc_6_8, La04_obl_6_8
& La04_pre_obl_5_9.

Details

xy Values of the signal

pre Values of the signal

dt Depth or time of the signal

age Tuned age of the signal

References

Laskar, J., Robutel, P., Joutel, F., Gastineau, M. Correia, A. C. M., & Levrard, B. (2004). A long-
term numerical solution for the insolation of the Earth. Astronomy & Astrophysics. 428. 261-285.
doi:10.1051/00046361:20041335

Shackleton, N. J., & Crowhurst, S. (1997). Sediment fluxes based on an orbitally tuned time scale
5 Ma to 14 Ma, site 926. Proceedings of the Ocean Drilling Program, Scientific Results. 154.
doi:10.2973/odp.proc.sr.154.102.1997

Sinnesael, M., Zivanovic, M., De Vleeschouwer, D., Claeys, P. & Schoukens, J. (2016). Astronom-
ical component estimation (ACE v.1) by time-variant sinusoidal modeling. Geoscientific Model
Development. 9. 3517-3531. doi:10.5194/gmd935172016

Sinnesael, M., De Vleeschouwer, D., Zeeden, C., et al. (2019). The Cyclostratigraphy Intercom-
parison Project (CIP): consistency, merits and pitfalls. Earth-Science Reviews. 199. 102965.
doi:10.1016/j.earscirev.2019.102965

Wilkens, R. H., Westerhold, T., Drury A. D., Lyle , M., Gorgas, T., Tian, J. (2017). Revisiting
the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5Ma.
Climate of the Past. 13. 779-793. doi:10.5194/cp137792017

Zeeden, C., Hilgen, F., Westerhold, T., Lourens, L., Röhl, U. & Bickert, T. (2013). Revised Miocene
splice, astronomical tuning and calcareous plankton biochronology of ODP Site 926 between 5

http://vo.imcce.fr/insola/earth/online/earth/online/index.php
http://vo.imcce.fr/insola/earth/online/earth/online/index.php
https://doi.org/10.1051/0004-6361%3A20041335
https://doi.org/10.2973/odp.proc.sr.154.102.1997
https://doi.org/10.5194/gmd-9-3517-2016
https://doi.org/10.1016/j.earscirev.2019.102965
https://doi.org/10.5194/cp-13-779-2017

dq.algorithm 11

and 14.4 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology. 369. 430–451. doi:10.1016/
j.palaeo.2012.11.009

dq.algorithm Calculates instantaneous frequency of freqeuncy carriers using the
DQ method

Description

Calculates instantaneous frequency of frequency carriers using the direct quadrature method from
Huang et al., 2009.

Usage

dq.algorithm(fc, dt)

Arguments

fc a matrix of amplitude between -1 and 1, making up the frequency carrier

dt a vector of depth or time values

Value

a list of the depth/time (dt), frequency (f), and identity tuning (idt), i.e. depths adapted to transform
the frequency carrier into a cosine of period 1.

References

Huang, Norden E., Zhaohua Wu, Steven R. Long, Kenneth C. Arnold, Xianyao Chen, and Karin
Blank. 2009. "On Instantaneous Frequency". Advances in Adaptive Data Analysis 01 (02):
177–229. https://doi.org/10.1142/S1793536909000096.

Examples

n <- 600

t <- seq_len(n)

p1 <- 30

xy <- sin(t*2*pi/p1 + 50)

int <- c(rep(1, 99 + 100), seq(1,3,2/100), seq(3,1,-2/100), rep(1,100 + 99))

dt <- cumsum(int)

cond <- dt < 75

xy <- xy[!cond]

https://doi.org/10.1016/j.palaeo.2012.11.009
https://doi.org/10.1016/j.palaeo.2012.11.009

12 extremist

dt <- dt[!cond]/1.2 - 62.5

res <- dq.algorithm(xy, dt)

opar <- par("mfrow")

par(mfrow = c(3,1))

plot(dt, xy, type = "o", pch = 19, main = "Frequency carrier")

plot(dt, 1/res$f, pch = 19, type = "l", log = "y", lwd = 2, ylim = c(25,80),
main = "Period (Direct Quadrature method)", ylab = "Period")

plot(res$idt[,1], xy, type = "o", pch = 19,
main = "Identity tuning", axes = FALSE, ylab = "xy", xlab = "dt")

ap <- approx(x = dt, y = res$idt[,1], xout = seq(0,600, by = 20))

axis(1, at = ap$y, labels = ap$x)
axis(2)
box()

par(mfrow = opar)

extremist Gives local extrema and zero crossings intervals

Description

Gives local minimas, maximas and zero crossings. Optimised for large data sets; the sky is the limit
(and by the sky I mean the ability of R and your computer to memorise large data sets; but within
this limit the algorithm can handle millions of points quickly).

Usage

extremist(xy, bound = FALSE, local = TRUE, zc = TRUE)

Arguments

xy the values where to find the local extremas

bound whether to consider the first and last points as both minima and maxima, for
special purposes. Default is F, has it should be.

local whether to consider the first and last points as local minima and maxima, if
TRUE by default, otherwise these first and last points will be ignored

zc whether to return the zero crossings

extricate 13

Value

a list of the indexes of the left (l) and right (r) boundaries for the minima (minindex), maxima
(maxindex) and zero crossing (cross), along with the number of extrema and zero crossings

Examples

Function script ----

xy <- c(1,0,0,0,4,5,5,0.5,-0.5,0.5,0,2,2,1,-1,-1,1,1,0,0,-4,-2,2,1,0,0.5,0,
NA, 0.5,0,-0.5,3,2,3,0,0.5,4,4,0)

impressme <- 0 # Increase up to 5 or 6 to be impressed (bugs if your system
can't handle the size of the data).
If you increase it, do not run the plot script.

xy <- rep(xy, round(10^impressme))

print(paste("You are running ", length(xy), " points", sep = ""))

res <- extremist(xy)

Plot script: do not run if you increase the impressme parameter ----

mini <- unique(c(res$minindex[[1]], res$minindex[[2]]))
maxi <- unique(c(res$maxindex[[1]], res$maxindex[[2]]))
zeri <- unique(c(res$cross[[1]], res$cross[[2]]))

l <- length(xy)

opar <- par("mfrow")

par(mfrow = c(3,1))

plot(1:l, xy, type = "o",pch = 19)
points(mini, xy[mini], pch = 19, col = "blue")

plot(1:l, xy, type = "o",pch = 19)
points(maxi, xy[maxi], pch = 19, col = "red")

plot(1:l, xy, type = "o",pch = 19)
points(zeri, xy[zeri], pch = 19, col = "green")
abline(h = 0, col = "grey")

par(mfrow = opar)

extricate Extricate a signal: an EEMD algorithm

14 extricate

Description

Performes EEMD

Usage

extricate(
xy,
dt,
nimf,
ini = NULL,
repl = 1,
comb = 100,
mirror_noise = TRUE,
factor_noise = 3,
unit_noise = "1stdiff",
sifting = 1,
output_sifting = FALSE,
remove = "lin.trend",
bind = FALSE,
speak = FALSE,
plot_process = FALSE,
pdf = TRUE,
name = "extricate",
ext = ".pdf",
dir = tempdir(),
width = 10,
height = 20,
track = TRUE,
openfile = TRUE

)

Arguments

xy signal, maybe linearly interpolated to have regular sampling interval

dt depth/time

nimf number of modes/components/intrinsic mode functions to decompose the signal
into

ini an optional vector of length n of the eventual initial Intrinsic Mode Function
xy would be a demodulation of, if it is a demodulation. In that case the mode
indexes will start at 2.

repl the amount of decompositions to output

comb the amount of decompositions each output decomposition will be a combination
of. Has to be a multiple of 2 (even and odd extension stacks have to be combined
in any case)

mirror_noise whether to generate a mirrored noise signal (for even and odd extension) that
will cancel perfectly when combining the decompositions

extricate 15

factor_noise a factor for the amplitude of white noise (finite amplitude obtained via runif).
By default it will be multiplied with the mean of the lagged-one difference to
define the noise amplitude

unit_noise whether to multiply factor_noise by the mean of the lagged-one difference (unit_noise
= "1stdiff") or not (unit_noise = "native")

sifting amount of iterations of the sifting process

output_sifting whether to output each sifting

remove whether to remove the linear trend (remove = "lin.trend") or the mean (remove
= "mean") prior to decomposition. The removed part will be added back after
the decomposition. If remove is anything else, nothing will be removed, which
can be problematic for the even and odd extension scheme used.

bind whether to bind the removed linear trend or mean to the last component (T), or
to add it as another component (F)

speak whether to print a sentence at each sifting: it gives the stack (even or odd), the
mode number and sifting number

plot_process whether to have a plot of the entire sifting process. This slows down the algo-
rithm, use with low ’repl’ and ’comb’ values for visualisation purposes

pdf whether the plot be directly set as a pdf file
name, ext, dir, width, height, track, openfile

arguments to provide to pdfDisplay if plot_process and pdf are TRUE

Value

a list made of $xy (original signal), $dt (depth/time), $m (a matrix of the decomposition), $repl
(the replicate id of each point) and $mode (the mode id of each point). If output_sifting is TRUE,
additional $even_sifting and $odd_sifting data.tables are provided, giving the condensed siftings
for the even and odd extensions.

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5) + t * 0.01

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec <- extricate(xy, dt, nimf = 7, repl = 1, comb = 40, factor_noise = 10,
sifting = 10, speak = TRUE, output_sifting = TRUE)

16 gzc

integrity(xy, dec)

parsimony(dec)

plot_emd(dec, select = c(4, 6), pdf = FALSE)
Not run:
plot_emd(dec, li = list(v = 0), dir = tempdir())
End(Not run)

gzc Calculates instantaneous frequency using the GZC method

Description

Calculates instantaneous frequency using the Generalised Zero-Crossing method from Huang et al.,
2009. General wrapper for the gzc.algorithm function that does all the actual work.

Usage

gzc(
emd = NULL,
ini = NULL,
m = NULL,
dt = NULL,
repl = 1,
mode = NULL,
dtout = NULL,
output = 1,
warn = TRUE

)

Arguments

emd emd-type object

ini an optional vector of length n of the eventual initial Intrinsic Mode Function xy
would be a demodulation of, if it is a demodulation. It will be integrated to the
results as mode 1.

m a matrix of the amplitude values (xy) of the components, each column being
a component. Each column should have the same number of non NA values.
Vectors, for 1 component, are accepted. Is overridden by emd.

dt the depth or time value. Is overridden by emd.

repl the amount of replicates in m. Is overridden by emd.

mode the mode sequence index to give to each replicated IMFs

dtout the dt values to sample the frequency and amplitude from if output = 2.

gzc 17

output the style of the output, whether 0, 1 or 2. 0 provides the raw output of gzc.algorithm,
1 and 2 provides a matrix with $dt (depth/time), $f (frequency) and $a ()ampli-
tude, but with output = 1 the matrix provides the dt only at the extremas and
zero-crossings, whereas with output = 2 the dt values are the ones provided
with the dtout parameter. 1 is better for plots, 2 allows easier calculations to be
performed downstream.

warn whether to warn if the sampling interval defined by the dtout parameter is to
small (redirected from StratigrapheR::tie.lim)

Value

depending on the output parameter:

output = 0 provides the raw output of gzc.algorithm, with $ldt and $rdt (the left and right bound-
aries of the depth/time intervals), $f (frequency) and $a (amplitude). To that are added $repl (the
replicate id) and $mode (the mode id)

output = 1 or 2 provides a matrix with $dt, $f and $a, but with output = 1 the matrix provides
the dt only at the extremas and zero-crossings, whereas with output = 2 the dt values are the ones
provided with the out parameter. 1 is better for plots, 2 allows easier calculations to be performed
downstream.

References

Huang, Norden E., Zhaohua Wu, Steven R. Long, Kenneth C. Arnold, Xianyao Chen, and Karin
Blank. 2009. "On Instantaneous Frequency". Advances in Adaptive Data Analysis 01 (02):
177–229. https://doi.org/10.1142/S1793536909000096.

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5) + t * 0.01

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)
dec <- extricate(xy, dt, nimf = 7, repl = 1, comb = 50,

factor_noise = 10, sifting = 10, speak = TRUE)

Not run:
plot_emd(dec, dir = tempdir())
End(Not run)

integrity(xy, dec)

18 gzc.algorithm

parsimony(dec)

res <- gzc(dec)

numb <- 4

opar <- par('mfrow')

par(mfrow = c(1,2))

plot(dec$m[,numb], dec$dt, type = "l",
main = paste("Mode", numb, " + Amplitude"),
xlab = "xy", ylab = "dt", ylim = c(0, 600))

lines(res$a[,numb], res$dt[,numb], col = "red", lwd = 2)

plot(1/res$f[,numb], res$dt[,numb], ylim = c(0,600),
xlab = "Period", ylab = "dt", log = "x",
type = "l", col = "red", lwd = 2, main = "Period")

par(mfrow = opar)

gzc.algorithm Calculates instantaneous frequency of simplified IMF using the GZC
method

Description

Calculates instantaneous frequency of simplified IMF using the Generalised Zero-Crossing method
from Huang et al., 2009.

Usage

gzc.algorithm(xy, dt)

Arguments

xy a matrix of amplitude

dt a vector of depth or time values

Details

the GZC method is precise to 1/4th of a period, so the results are provided between left and right
points, i.e. either an extrema or a zero-crossing.

Value

a list of $ldt (left position), $rdt (right position), $f (frequency) and $a (amplitude)

gzc.departure 19

References

Huang, Norden E., Zhaohua Wu, Steven R. Long, Kenneth C. Arnold, Xianyao Chen, and Karin
Blank. 2009. ‘On Instantaneous Frequency’. Advances in Adaptive Data Analysis 01 (02):
177–229. https://doi.org/10.1142/S1793536909000096.

Examples

xyi <- c(0.5,0,-0.5,0,0.5,0,-0.5,0,0.5,0,-0.5,0,0.5,0,-0.5,0,0.5,0,-0.5,0,
1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1)

dti <- 1:length(xyi)

d <- simp.emd(m = xyi, dt = dti)

xy <- d$xy
dt <- d$dt

res <- gzc.algorithm(xy, dt)

opar <- par('mfrow')

par(mfrow = c(2,1))

plot(dti, xyi, pch = 19, type = "o", ylab = "xy", xlab = "dt")
points(dt, xy, pch = 19, col = "green")
points(resldt, resa, pch = 19, col = "red")
points(resrdt, resa, pch = 19, col = "red")

plot(dt, rep(max(res$f, na.rm = TRUE), length(dt)), type = "n",
ylab = "Frequency", xlab = "dt",
ylim = c(0, 2 * max(res$f, na.rm = TRUE)))

points(resldt, resf, pch = 19)
points(resrdt, resf, pch = 19)

par(mfrow = opar)

gzc.departure departure of instantaneous frequency to generalized zero-crossing

Description

departure of instantaneous frequency to generalized zero-crossing of instantaneous freqeuncy. The
departure is calculated as the exponential of the absolute difference of logarithms of frequencies
obtained using a robust generalized zero-crossing method through the gzc function (where the
components are simplified into extrema separated by zero-crossings) and instantaneous frequency
computed from another method

20 gzc.departure

Usage

gzc.departure(
pulse = NULL,
dt = NULL,
m = NULL,
f = NULL,
repl = 1,
mode = NULL,
simplify = TRUE

)

Arguments

pulse a pulse object object

dt the depth or time. Is overridden by pulse.

m a matrix of the modes to calculate the gzc frequency from. Is overridden by
pulse.

f a matrix of the frequencies to compare to gzc.

repl the amount of replicates in m. Is overridden by emd.

mode the mode sequence index to give to each replicated IMFs. Is overridden by emd.

simplify whether to average the value for each component of each replicate

Value

If simplify is TRUE, the function returns the average gzc departure as a data frame where the
columns stand for the modes and the rows for the replicates. If simplify if FALSE, the function
returns the functions returns local gzc departure.

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5) + t * 0.01

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec1 <- extricate(xy, dt, nimf = 5, repl = 1, comb = 10, sifting = 1,
factor_noise = 10, bind = TRUE, speak = TRUE)

HilbertEnvelope 21

dec2 <- extricate(xy, dt, nimf = 6, repl = 1, comb = 100, sifting = 5,
factor_noise = 50, bind = TRUE, speak = TRUE)

Not run:
plot_emd(dec1, name = "EMD 1", dir = tempdir())
plot_emd(dec2, name = "EMD 2", dir = tempdir())
End(Not run)

parsimony(dec1)
parsimony(dec2)

f1 <- inst.pulse(dec1, plot = FALSE)
f2 <- inst.pulse(dec2, plot = FALSE)

gzc.departure(f1)
gzc.departure(f2)

HilbertEnvelope Instantaneous amplitude

Description

Generates the instantaneous amplitude of an analytic signal given by HilbertTransform

Usage

HilbertEnvelope(asig)

Arguments

asig The analytic signal returned by HilbertTransform

Value

envelope Instantaneous amplitude

Author(s)

Daniel C. Bowman (in the hht package)

See Also

HilbertTransform, InstantaneousFrequency

22 HilbertTransform

Examples

tt <- seq(1000) * 0.01
sig <- sin(4 * pi * tt) + sin(3.4 * pi * tt)
asig <- HilbertTransform(sig)
env <- HilbertEnvelope(asig)
plot(tt, sig, type = "l")
lines(tt, env, col = "red")
lines(tt, -env, col = "red")

HilbertTransform The Hilbert transform

Description

Creates the analytic signal using the Hilbert transform.

Usage

HilbertTransform(sig)

Arguments

sig Signal to transform.

Details

Creates the real and imaginary parts of a signal.

Value

asig Analytic signal

Author(s)

Daniel C. Bowman (in the hht package)

See Also

HilbertEnvelope, InstantaneousFrequency

inst.pulse 23

Examples

tt <- seq(1000) * 0.01
sig <- sin(pi * tt)
asig <- HilbertTransform(sig)

plot(tt, sig, xlim = c(0, 12))

lines(tt, Re(asig), col = "green")
lines(tt, Im(asig), col = "red")
legend("topright", col = c("black", "green", "red"),

lty = c(NA, 1, 1), pch = c(1, NA, NA),
legend = c("Signal", "Real", "Imaginary"))

inst.pulse Computes instantaneous frequency using the Hilbert transform

Description

Calculates instantaneous frequency using the Hilbert transform (HT), normalised Hilbert transform
(NHT) or the direct quadrature (DQ) methods. Normalisation is done for NHT and DQ using
Huang et al., 2009 algorithm, but the empirical normalisation scheme can fail due to overshoot or
undershoot of the spline. Additional research is necessary for that last feature.

Usage

inst.pulse(
emd = NULL,
imf = NULL,
m = NULL,
dt = NULL,
ini = NULL,
repl = 1,
mode = NULL,
last = FALSE,
plot = TRUE,
method = "HT",
delta = NULL,
tolerance = 8,
relative = TRUE,
breaks = 500,
bins = 100,
cut = 18,
lines = NULL

)

24 inst.pulse

Arguments

emd an emd object

imf a matrix of same frequency modes to calculate the frequency from. Is overridden
by emd. This allows to calculate and visualise the results for single IMFs more
clearly than in a population plot.

m a matrix of the modes to calculate the frequency from. Is overridden by emd and
imf.

dt the depth or time. Is overridden by emd.

ini an optional vector of length n of the eventual initial Intrinsic Mode Function xy
would be a demodulation of, if it is a demodulation. It will be integrated to the
results as mode 1.

repl the amount of replicates in m. Is overridden by emd.

mode the mode sequence index to give to each replicated IMFs. Is overridden by emd.

last whether to use the last mode (trend/residue).

plot whether to have a plot summary of the output.

method the IF calculation method: "HT" for Hilbert transform (default), "NHT" for nor-
malised Hilbert transform, and "DQ" for direct quadrature. The two last require
normalisation, which can sometimes fail.

delta, tolerance, relative
parameters to feed to respace for interpolation

breaks, bins, cut
parameter for the plots: breaks is fed to plot_hist, bins is fed to plot_hex,
and cut defines the number of color cuts for plot_hex. For better control use
plot_hist and plot_hex directly.

lines the period of lines to be added to the plots for better visualisation

Value

a list made of $dt (depth/time), $f (instantaneous frequency), $a (instantaneous amplitude),$repl
(the replicate id of each point) and $mode (the mode id of each point)

References

Huang, Norden E., Zhaohua Wu, Steven R. Long, Kenneth C. Arnold, Xianyao Chen, and Karin
Blank. 2009. "On Instantaneous Frequency". Advances in Adaptive Data Analysis 01 (02):
177–229. https://doi.org/10.1142/S1793536909000096.

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

inst.ratio 25

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5) + t * 0.01

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)
dec <- extricate(xy, dt, nimf = 7, repl = 10, comb = 10,

factor_noise = 10, sifting = 10, speak = FALSE)
Not run:
plot_emd(dec, dir = tempdir())
End(Not run)

integrity(xy, dec)
parsimony(dec)

ht <- inst.pulse(dec, lines = c(30, 240))
gzcr <- gzc(dec)

imf <- dec$m[,4]

inst.pulse(imf = imf, dt = dt, method = "DQ")

inst.ratio Computes instantaneous ratio of frequency

Description

Computes instantaneous ratio of frequency

Usage

inst.ratio(
pulse = NULL,
dt = NULL,
f = NULL,
a = NULL,
repl = 1,
plot = TRUE,
sqrt.rpwr = TRUE,
style = "b",
select = NA,
bins = 100,
cut = 18,
lines = NULL,
width = 10,
height = 10,
name = "Ratio",

26 inst.ratio

ext = ".pdf",
dir = tempdir(),
track = TRUE,
openfile = TRUE

)

Arguments

pulse a pulse object (created by inst.pulse for instance)

dt depth/time. Is overridden by pulse.

f instantaneous frequency. Is overridden by pulse.

a instantaneous amplitude. Is overridden by pulse.

repl number of replicates in f

plot whether to plot an output
sqrt.rpwr, style, select, bins, cut, lines, width, height

parameters to feed to plot_ratio for the plots
name, ext, dir, track, openfile

parameters to feed to pdfDisplay in plot_ratio for pdf plot.

Value

a list of depth/time ($dt), frequency ($f), ratio of frequency ($ratio), if a is provided; the ratio
power ($rpwr) i.e. the multiplication of the instantaneous amplitudes of the modes two by two, the
replicates id ($repl)and id for the first and second frequency modes used for the ratio ($l for the
first, $r for the second, or $lr for the two combined)

Examples

set.seed(42)

n <- 600
time <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(time *2*pi/p2)) * sin(time *2*pi/p1) +
2 * sin(time *2*pi/p2) + rnorm(n, sd = 0.5)

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec <- extricate(xy, dt, nimf = 7, sifting = 10,
repl = 10, comb = 10, factor_noise = 10,
speak = TRUE)

Not run:
plot_emd(dec, dir = tempdir())

InstantaneousFrequency 27

End(Not run)

integrity(xy, dec)
parsimony(dec)

ht <- inst.pulse(dec, lines = c(30, 240))
ratio <- inst.ratio(ht, style = "s", lines = 8)

InstantaneousFrequency

Derive instantaneous frequency

Description

Calculates instantaneous frequency from an analytic signal.

Usage

InstantaneousFrequency(asig, tt, method = "arctan", lag = 1)

Arguments

asig Analytic signal produced by HilbertTransform

tt Sample times
method How the instantaneous frequency is calculated. "arctan" uses the arctangent

of the real and imaginary parts of the Hilbert transform, taking the numerical
derivative of phase for frequency. "chain" uses the analytical derivative of the
arctangent function prior to performing the numerical calculation.

lag Differentiation lag, see the diff function in the base package.

Value

instfreq Instantaneous frequency in 1/time

Note

The "arctan" method was adapted from the hilbertspec function in the EMD package.

!!IMPORTANT!! The numeric differentiation may be unstable for certain signals. For example,
high frequency sinusoids near the Nyquist frequency can give inaccurate results when using the
"chain" method. When in doubt, use the PrecisionTester function to check your results!

Author(s)

Daniel C. Bowman (in the hht package)

See Also

PrecisionTester

28 integrity

integrity Integrity of a decomposition

Description

The function additions each component of a decomposition by depth/time, subtract it with the origi-
nal signal, and provides the absolute of this subtraction. This is allows to verify if the decomposition
is computed correctly.

The bulk value is the cumulated value of this proxy. If the decomposition is done right the value
should be very small, but non-zero due to the floating-point arithmetics used by computers that
generate tiny errors. Its actually interesting: the first computations of the orbital solutions were
strongly affected by this error, as the chaotic behaviour of the equations enhanced the effect of
these tiny tiny errors.

Usage

integrity(xy, emd = NULL, m = NULL, repl = 1, bulk = TRUE)

Arguments

xy the signal

emd an emd object to test. The emd$xy original signal is not used, to avoid confusion:
you always have to provide the xy signal yourself.

m a matrix with columns of same length that xy, made of the decomposition of the
signal. Is overridden by emd.

repl the replication of decompositions in m. Is overridden by emd.

bulk whether to have a bulk value each decomposition replication, or for each dt of
each replication

Value

a matrix with each column being a replication, or a list of bulk values for each replication

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5)

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

is.ratio 29

dt <- cumsum(inter_dt)

dec <- extricate(xy, dt, nimf = 7, repl = 10, comb = 10, factor_noise = 10,
sifting = 10, speak = TRUE, output_sifting = TRUE)

integrity(xy, dec)

is.ratio Check ratio objects

Description

Check ratio objects

Usage

is.ratio(ratio)

Arguments

ratio a ratio object to check

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5)

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec <- extricate(xy, dt, nimf = 7, sifting = 10,
repl = 10, comb = 10, factor_noise = 10,
speak = TRUE)

ht <- inst.pulse(dec, plot = FALSE)
ratio <- inst.ratio(ht, plot = FALSE)

is.ratio(ratio)

30 mode.in

is.simp.emd Tests for simplified EMD

Description

Tests whether each column of a matrix is an alternation of -minima zero-crossing maxima zero-
crossing-

Usage

is.simp.emd(xy)

Arguments

xy a vector or matrix of values to test

Examples

xytest1 <- c(0.5, 1,-1,-0.85,-0.5,-1,-0.5,-1,1,0.5,0,-1,0,
1,-1,0,1,2,-2,1,2,1,3,0,-1,-1,3,0)

xytest2 <- c(0, 1,-1,-0.85,-0.5,-1,-0.5,-1,1,0.5,0,0,
1,1,1,1,2,-2,1,2,1,3,0,-1,-1,3,0)

dat1 <- simp.emd(m = xytest1, dt = 1:length(xytest1))

dat2 <- simp.emd(m = xytest2, dt = 1:length(xytest2))

is.simp.emd(dat1$xy)

is.simp.emd(dat2$xy)

There is a problem when two maxima or minima are separeted by a point at 0
that does not cross any further, creating a false simplified IMF. THis is
not considered as a simplified IMF by this function. However this scenario
should be very rare in EMDs, but you never really know.

mode.in Add / Remove / Bind modes in emd objects

Description

Add / Remove / Bind modes in emd objects

mode.in 31

Usage

mode.in(emd, xy, mode = NA, adjust = TRUE, name = "Added")

mode.out(obj, keep = NULL, lose = NULL, adjust = F, reorder = F)

mode.bind(emd, mode = NA, xy = NULL, adjust = T, name = "bound")

Arguments

emd emd-type object

xy an Instrinsic Mode Function to add

mode, keep, lose [mode.in] the position where to add the mode / [mode.out] the modes to keep or
lose / [mode.bind] the modes to merge

adjust whether to adapt the initial signal of an emd object ($xy in the emd object) when
adding or removing a mode

name the name of the new mode

obj emd or pulse type object

reorder whether to reinitialise the index of modes when suppressing one

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5)

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec <- extricate(xy, dt, nimf = 7, sifting = 10,
repl = 10, comb = 10, factor_noise = 10,
speak = TRUE)

opar <- par('mfrow')

par(mfrow = c(2,1))

integrity(xy, dec)

ht <- inst.pulse(dec, plot = FALSE)

plot_hist(x = 1/ht$f, breaks = 500, id = ht$mode,

32 n.extrema

xlog = TRUE, text = TRUE, xlab = "Period",
main = "Initial Decomposition")

bound <- mode.bind(dec, mode = c(6,7))

ht2 <- inst.pulse(bound, plot = FALSE)

plot_hist(x = 1/ht2$f, breaks = 500, id = ht2$mode,
xlog = TRUE, text = TRUE, xlab = "Period",
main = "Binding of modes 6 and 7")

par(mfrow = opar)

Not run:
plot_emd(bound, dir = tempdir(), adapt.axis = TRUE)
End(Not run)

n.extrema Number of extrema/zero-crossings

Description

Computes the number of extrema and zero-crossings for different groups of data, by their id or
separated by NA values

Usage

n.extrema(
xy,
id = NULL,
use.names = TRUE,
bound = FALSE,
local = FALSE,
zc = TRUE

)

Arguments

xy signal or decomposed signal
id the id for different groups. If any NA value is in xy, it will also separate two

groups of data
use.names whether to use the names in id
bound, local, zc parameters to feed to extremist

Value

a list of the number of minima ($n.min), maxima ($n.max), and, if zc = TRUE, zero-crossings
($n.cross)

normalise 33

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5)

xy <- xy - mean(xy)

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec <- extricate(xy, dt, nimf = 7, sifting = 10,
repl = 1, comb = 40, factor_noise = 10,
speak = TRUE)

integrity(xy, dec)
parsimony(dec)

n.extrema(decm, decmode)

plot_emd(dec, select = c(6,8,9), pdf = FALSE, adapt.axis = TRUE)
Not run:
plot_emd(dec, li = list(v = 0), adapt.axis = TRUE, dir = tempdir())
End(Not run)

normalise Empirical AM and FM decomposition

Description

Applies the normalisation scheme of Huang et al., 2009 to decompose any Intrinsic Mode Functions
obtained (usually via Empirical Mode Decomposition) into an Frequency Modulated component of
amplitude 1, also called carrier, and its Amplitude Modulated enveloppe. The carrier can then be
used to compute the instantaneous frequency via the Normalised Hilbert Transform (NHT) or by
calculating its Direct Quadrature (DQ) (Huang et al., 2009). HOWEVER THIS FUNCTION CAN
FAIL due to overshoot or undershoot of the spline fitting. Additional research is necessary.

Usage

normalise(emd = NULL, m = NULL, dt = NULL, repl = 1, last = TRUE, speak = TRUE)

normalize(emd = NULL, m = NULL, dt = NULL, repl = 1, last = TRUE, speak = TRUE)

34 normalise

Arguments

emd an emd object

m a matrix of the modes to calculate the amplitude and the frequency carrier from.
Is overridden by emd.

dt the depth or time. Is overridden by emd.

repl the amount of replicates in m. Is overridden by emd.

last whether to use the last mode (trend/residue).

speak whether to print a sentence at each iteration

Value

a list of two matrices: $fc (frequency carrier) and $a (instantaneous amplitude)

References

Huang, Norden E., Zhaohua Wu, Steven R. Long, Kenneth C. Arnold, Xianyao Chen, and Karin
Blank. 2009. ‘On Instantaneous Frequency’. Advances in Adaptive Data Analysis 01 (02):
177–229. https://doi.org/10.1142/S1793536909000096.

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5)

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec <- extricate(xy, dt, nimf = 7, sifting = 10,
repl = 1, comb = 100, factor_noise = 10,
speak = TRUE)

plot_emd(dec, pdf = FALSE, select = 4)

integrity(xy, dec)
parsimony(dec)

m <- dec$m

res <- normalise(dt = dt, m = m, last = FALSE)

oscillate 35

numb <- 4

opar <- par('mfrow')

par(mfrow = c(1,2))

plot(m[,numb], dt, type = "l", xlab = "xy",
main = paste("Mode", numb, "and AM enveloppe"))

lines(res$a[,numb], dt, col = "red", lty = 5, lwd = 2)

plot(res$fc[,numb], dt, type = "l", xlab = "xy",
main = "FM carrier")

par(mfrow = opar)

oscillate Modify a signal using a Van der Pol oscillator

Description

Modify a signal using a Van der Pol oscillator

Usage

oscillate(
xy,
dt,
period,
delta = 0.05,
damp = 5e-05,
f.noise = 5,
f.signal = 0.95,
dx = function(x, y, beta, damp) beta * y - x * (x^2 + y^2 - 1) * damp,
dy = function(x, y, beta, damp) -beta * x - y * (x^2 + y^2 - 1) * damp,
xi = if (length(xy) != 0) xy[1] else 0.5,
yi = if (length(xy) != 0) xy[1] else 0.5,
normalise = TRUE,
limit = TRUE

)

Arguments

xy initial signal (vector or matrix)

dt depth/time (same length than length/rows of xy)

period the period of the oscillator (length 1 or n)

delta the sampling interval for iteration (length 1 or n)

36 parsimony

damp damping parameter

f.noise a factor of the amount of noise (length 1 or n)

f.signal a factor of the amount of signal (length 1 or n)

dx, dy the differentials used in the oscillator. They should be provided as functions
needing x, y, beta (2*pi/period) and damp (damping) parameters

xi the initial x value

yi the initial y value

normalise whether to recenter the output signal on the initial signal

limit whether to warn when parameters are irrealistic (subjective)

Examples

set.seed(42)

n <- 800

dt <- seq(0,n, 1)

p1 <- 100
p2 <- 40

xy <- (1 + 0.6 * sin(dt*2*pi/p1)) * sin(dt*2*pi/p2) + 2 * sin(dt*2*pi/p1) + 1

xyout <- oscillate(xy, dt, period = 30)

opar <- par("mfrow")

par(mfrow = c(1,1))

plot(xy, dt, type = "l",
main = "Initial signal (bold) & oscillated signal (dashed)",
lwd = 2, xlim = c(-4, 6))

lines(xyout, dt, type = "l", col = "grey50", lwd = 2, lty = 5)

par(mfrow = opar)

parsimony Parsimony of a decomposition

Description

The function additions the absolute values of each component of a decomposition by depth/time,
and computes the ratio of that with the absolute values of the signal. This is done either by
depth/time or on the time/depth-cumulated signal (i.e. the bulk signal).

This is a proxy for parsimony: it is the factor of amplitude added by the decomposition. A perfect
decomposition, that does not ’invent’ wiggles, should approach 1, but will logically always be

parsimony 37

higher. However it is influenced by the absolute value of the initial signal: if the original signal
is not centered around 0, the parsimony is not significative (it will artificially be closer to 1). To
correct for that, the residue (part of the decomposition that is not centered around zero) has to be
removed from the original signal.

Usage

parsimony(
emd = NULL,
xy = NULL,
m = NULL,
mode = NULL,
repl = 1,
bulk = TRUE,
correct = NA

)

Arguments

emd an emd object

xy the signal

m a matrix with columns of same length that xy, made of the decomposition of the
signal

mode the mode sequence index to give to each replicated IMFs

repl the replication of decompositions in m

bulk whether to have a bulk value each decomposition replication, or for each dt of
each replication

correct the modes to remove from the original signal and decomposition for a significa-
tive parsimony calculation. If NA, it removes the last mode, considered as the
residue. Can be a vector of several integers, standing for the columns of m. If
NULL, no mode is removed

Value

a matrix with each column being a replication, or a list of bulk values for each replication

Examples

set.seed(42)

n <- 500

dt <- seq_len(n)
xy <- rnorm(n, mean = 0, sd = 1) + 10

dec <- extricate(xy, dt, nimf = 7, comb = 10, sifting = 10,
factor_noise = 1, speak = TRUE)

Not run:

38 pile.down

plot_emd(dec, dir = tempdir())
End(Not run)

parsimony(dec, correct = NULL)

parsimony(dec)

pile.down Destacks a pile.up() signal

Description

Destacks a signal stacked by pile.up by averaging each repetition back to n multiples.

Usage

pile.down(x, stack, even, n = length(unique(stack$id)) - 2)

Arguments

x Treated signal

stack Initial stack from which the x signal is from

even Whether the x signal comes from even extension part of the initial stack (if
FALSE, it would come from the odd extension part)

n The multiple of destacking (has to be a multiple of n/2 (n being the parame-
ter used in pile.up), in other words a multiple of length(unique(stack$id)) - 2
(minus 2 as the upper an lower extension are to be removed)

Value

a matrix or a vector of the destacked signal

Examples

set.seed(42)

n <- 200
t <- seq_len(n)

p1 <- 25
p2 <- 75

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5)

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)
inter_dt[20] <- 20

pile.up 39

dt <- cumsum(inter_dt)

opar <- par()$mfrow
par(mfrow = c(1,1))

res <- pile.up(xy, dt, 4)

par(mfrow = c(2,1))
plot(resndt, reseven, type = "l", col = "blue")
plot(resndt, resodd, type = "l", col = "red")

par(mfrow = c(opar))

Small number of repetitions ----

opar <- par("mfrow")
par(mfrow = c(1,2))

stack <- pile.up(xy, dt, 10)

signal <- stack$even + runif(length(stack$even), -3, 3)

res <- pile.down(signal, stack, even = TRUE, n = 5)

plot(xy, dt, type = "l", lwd = 2, main = "Low number of repetitions")
lines(res, dt, type = "l", lty = 5, col = "red")

High number of repetitions ----

stack <- pile.up(xy, dt, 1000)

signal <- stack$even + runif(length(stack$even), -3, 3)

res <- pile.down(signal, stack, even = TRUE, n = 500)

plot(xy, dt, type = "l", lwd = 2, main = "High number of repetitions")
lines(res, dt, type = "l", lty = 5, col = "red")

par(mfrow = c(opar))

pile.up Repeat and stack a signal in central and line symmetry

Description

Repeats and stacks a signal duplicated in central (even) and line (odd) symmetry to apply Ensemble
Empirical Mode Decomposition (EEMD) on one single vector following the simple boundary rule
of Zeng and He (2004). This allows to avoid the iterations that are typical of EEMD. A complete

40 pile.up

set of signal is added by default at the upper and lower part of the stack, to be removed in the end
process.

Usage

pile.up(xy, dt, n, warn = TRUE)

Arguments

xy the signal

dt the depth/time positions of each xy

n the number of replicates you want. It has to be a multiple of two, as you will
generate two stacks: the even and the odd one.

warn whether you want to be annoyed

Value

a dataframe of the original dt (odt), the stack-modified dt (ndt), the inversion factor to change the
even stack into the odd one and vice-versa (invert), the even xy stack (even) and the odd one (odd)

Examples

set.seed(42)

n <- 200
t <- seq_len(n)

p1 <- 25
p2 <- 75

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5)

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)
inter_dt[20] <- 20

dt <- cumsum(inter_dt)

opar <- par()$mfrow
par(mfrow = c(1,1))

res <- pile.up(xy, dt, 4)

par(mfrow = c(2,1))
plot(resndt, reseven, type = "l", col = "blue")
plot(resndt, resodd, type = "l", col = "red")

par(mfrow = c(opar))

plot_emd 41

plot_emd Plot a decomposition

Description

General plot for a complete decomposition (that can be summed back to the original signal)

Usage

plot_emd(
emd = NULL,
xy = NULL,
ini = NULL,
dt = NULL,
m = NULL,
mode = NULL,
repl = 1,
size.xy = 5,
size.dt = 25,
style = 2,
xylim = NULL,
dtlim = NULL,
inilim = NULL,
vertical = TRUE,
adapt.axis = FALSE,
adapt.last = TRUE,
select = NULL,
over = NULL,
s = list(type = "o", pch = 19, cex = 0.5),
o = list(type = "l", col = "blue", lwd = 2),
i = list(type = "o", pch = 19, cex = 0.5),
e = list(type = "l", col = "red", lwd = 2),
la = list(h = c(), v = c(), col = "red", xpd = FALSE),
ls = list(),
li = list(col = "grey", lty = 5),
box = TRUE,
ax = list(),
ay = list(),
parg = list(),
title = TRUE,
t1 = "Signal",
t2 = "Mode",
pdf = TRUE,
name = "EMD",
ext = ".pdf",
dir = tempdir(),
track = TRUE,

42 plot_emd

openfile = TRUE
)

Arguments

emd an emd object

xy the original signal. Is overridden by emd.

ini an optional vector of length n of the eventual initial Intrinsic Mode Function xy
would be a demodulation of, if it is a demodulation.

dt the depth/time. Is overridden by emd.

m a matrix with columns of same length that xy, made of the decomposition of the
signal. Is overridden by emd.

mode which modes/decompositions to plot

repl the replication of decompositions in m. Is overridden by emd.
size.xy, size.dt

the size i inches of each individual plot in pdf

style whether to not plot the original signal (style = 0), to plot it as the first signal
(style = 1), or to plot it before each individual mode (style = 2, is the default)

xylim, dtlim, inilim
the boundaries for the plots (inilim stands for the xy boundaries of the plot of
the initial IMF xy is a demodulation of, if applicable)

vertical whether to have the depth/time [dt] axis vertically (geologist convention) or hor-
izontaly (climatologist convention)

adapt.axis whether to let the plot adapt the axis to see the variability of the decompositions.
The default os to have a comparable x axis for each plots

adapt.last whether to adapt the last plot as a residue (if TRUE the x axis will be identical
to the one of the signal, not centered on 0)

select the components to plot

over which modes/decompositions will be cumulated and added to the signal plotted
at their left or above them (if style = 2)

s, o, i, e lists of parameters to feed lines, for the original signal, the cumulated modes/decompositions
overlapping it, the modes/decompositions themselves, and the enveloppe of the
initial signal used for demodulation if it applies, respectively.

la, ls, li lists of parameters to provide the abline function (makes personalised lines for
you to have a better grasp of the data). la will plot on all panels, ls on the signal
ones, and li on the modes ones.

box whether to draw boxes around the plots

ax, ay lists of parameters to feed minorAxis, the function making the axes, for the x
and y axes

parg list of parameters to feed par

title whether to write titles

t1 the title for the signal

plot_hex 43

t2 the title for the modes

pdf whether to plot as a pdf

name, ext, dir, track, openfile
parameters for the pdfDisplay function, namely the name of the pdf file, its
extension (if you want to make a .svg file you can), the directory of the file,
whether to track the changes (if you use sumatrapdf as a default pdf reader you
can set it to F and it will avoid creating too many pdf files), and whether to
directly open the file

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5) + 0.01 * t

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec <- extricate(xy, dt, nimf = 7,
repl = 10, comb = 10, factor_noise = 10,
speak = TRUE)

plot_emd(dec, select = c(4,6), pdf = FALSE)
Not run:
plot_emd(dec, dir = tempdir())
End(Not run)

plot_hex Group and/or log-scale hexagonal binning

Description

Group and/or log-scale hexagonal binning. Provides a legend indicating the count representations.
USES THE GRID GRAPHICAL SYSTEM, BASE GRAPHICS NOT SUPPORTED. To add lines,
polygons or text, use the l, g and t arguments.

44 plot_hex

Usage

plot_hex(
x,
y,
id = NA,
select = NA,
uniform = TRUE,
bins = 60,
xbnds = range(x, na.rm = TRUE),
ybnds = range(y, na.rm = TRUE),
xlim = xbnds,
ylim = ybnds,
log = "",
shape = 1,
mincnt = 1,
maxcnt = NA,
colorcut = seq(0, 1, length = 17),
colramp = function(n) matlab.like(length(colorcut) - 1),
trans = NULL,
inv = NULL,
border = NULL,
lwd = 0.1,
cex = 1,
main = "",
xlab = "x",
ylab = "y",
xaxis = TRUE,
yaxis = TRUE,
xaxs = "r",
yaxs = "r",
box = TRUE,
mar = c(0.15, 0.125, 0.15, 0.2),
legend = TRUE,
leg_sep = 0.1,
xpd_hex = 0.75,
xpd_leg = 1.5,
l = list(x = NULL, y = NULL, default.units = "native"),
g = list(x = NULL, y = NULL, default.units = "native"),
t = list(label = NULL, default.units = "native"),
plot = TRUE

)

Arguments

x, y vectors giving the coordinates of the bivariate data points to be binned.

id a vector of ids for each x value, to separate different groups of data

select the groups of ids to plot

plot_hex 45

uniform whether to keep the creaks defined by the entire matrixes when selecting only a
part of it

bins the number of bins partitioning the range of xbnds.

xbnds, ybnds horizontal and vertical limits of the binning region in x or y units respectively;
must be numeric vector of length 2.

xlim, ylim the limits of the plot

log a character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

shape the theoretical shape = yheight/xwidth of the plotting. This adapts the form of
the hexagons accordingly.

mincnt, maxcnt fraction of cell area for the lowest and largest count, respectively

colorcut vector of values covering [0, 1] that determine hexagon color class boundaries
and hexagon legend size boundaries. Alternatively, an integer (<= maxcnt) spec-
ifying the number of equispaced colorcut values in [0,1].

colramp function accepting an integer n as an argument and returning n colors.

trans a transformation function for the counts such as log10

inv the inverse transformation function (if trans = log10, inv should for instance
be function(x) 10^x.

border the color of the border of the hexagons. By default it will be the color of the
filling

lwd the width of the border of the hexagons.

cex the magnification of text.

main main title.

xlab, ylab x and y axis labels respectively.

xaxis, yaxis whether to plot the x and y axes respectively.

xaxs, yaxs The style of axis interval calculation to be used for the axes. By default the style
"r" (regular) first extends the data range by 4 percent at each end and then finds
an axis with pretty labels that fits within the extended range. Style "i" (internal)
just finds an axis with pretty labels that fits within the original data range.

box whether to plot a box.

mar a numerical vector of the form c(bottom, left, top, right) which gives the room
the give to the margins in Normalised Parent Coordinates (see grid package for
more information)

legend whether to plot the legend.

leg_sep the distance between hexagons and text f the legend in Normalised Parent Coor-
dinates left on the right margin

xpd_hex factor to expand the legend hexagons

xpd_leg factor to expand the height of the legend

l a list of arguments to feed to grid::grid.polyline ATTENTION the grid
package has to be loaded

46 plot_hex

g a list of arguments to feed to grid::grid.polygon ATTENTION the grid pack-
age has to be loaded

t a list of arguments to feed to grid::grid.text ATTENTION the grid package
has to be loaded

plot whether to plot. If FALSE, returns a grob.

Examples

library(grid) # To use the gpar function

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5)

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec <- extricate(xy, dt, nimf = 7, sifting = 10,
repl = 10, comb = 10, factor_noise = 10,
speak = FALSE)

Not run:
plot_emd(dec, dir = tempdir())
End(Not run)

integrity(xy, dec)
parsimony(dec)

ht <- inst.pulse(dec, plot = FALSE)

plot_hex(x = 1/ht$f, y = ht$a, bins = 100, ybnds = c(0,2),
log = "x", trans = log10, inv = function(x) 10^x,
main = "Spectral Population", xlab = "Period", ylab = "Amplitude")

plot_hex(x = 1/ht$f, y = ht$a, bins = 100, ybnds = c(0,2),
log = "x", trans = log10, inv = function(x) 10^x,
main = "Spectral Population", xlab = "Period", ylab = "Amplitude",
id = ht$mode, select = c(4,6,7),
l = list(x = c(30, 30, 240, 240), y = unit(c(0,1,0,1), "npc"),

id = c(1,1,2,2), gp = gpar(col = c("red", "blue"), lwd = 2)),
g = list(x = c(18, 50, 50, 18, 18, 50, 50, 18),

y = c(0, 0, 1.9, 1.9, 2.05, 2.05, 1.95, 1.95),
id = c(1,1,1,1,2,2,2,2),
gp = gpar(col = c("red", NA), fill = c(NA, "white"), lwd = 2)),

plot_hist 47

t = list(label = "Mode 4", x = 30, y = 2, gp = gpar(col = "red")))

plot_hist Group and/or log-scale histogram

Description

Specialised histogram: allows to work in log-scale (for x) and to distinguish different groups of data

Usage

plot_hist(
x,
breaks = 100,
id = NA,
select = NA,
pile = TRUE,
line = FALSE,
mids = FALSE,
xlim = NA,
ylim = NA,
xlog = FALSE,
axes = TRUE,
xa = list(),
ya = list(),
main = "",
xlab = "X",
ylab = "Counts",
col = NA,
border = NA,
text = FALSE,
labels = NA,
t = list(adj = c(0.5, -2), font = 2),
add = FALSE

)

Arguments

x vector or matrix

breaks one of:

• a vector giving the breakpoints between histogram cells,
• a function to compute the vector of breakpoints,
• a single number giving the number of cells for the histogram,
• a character string naming an algorithm to compute the number of cells (see

‘Details’ in hist),

48 plot_hist

• a function to compute the number of cells.

In the last three cases the number is a suggestion only; as the breakpoints will
be set to pretty values, the number is limited to 1e6 (with a warning if it was
larger). If breaks is a function, the x vector is supplied to it as the only argument
(and the number of breaks is only limited by the amount of available memory).

id a vector of ids for each x value, to separate different groups of data

select a vector of id values idenifying the groups of data to plot and their order

pile whether to cumulate the different one on the other

line whether to plot as lines or rectangles

mids if lines is TRUE, whether the nodes of the lines are the middle positions or the
upper corner of the rectangles.

xlim, ylim the boundaries for the plots. If ylim = NA the upper ylim will be increased by
10% to allow for text (see ’text’ parameter)

xlog whether to set the x axis in log scale

axes whether to plot the axes

xa, ya list of arguments to feed minorAxis for the x and y axes respectively

main, xlab, ylab the main title and the labels of the x and y axes

col a function or a character vector defining the colors of the different modes

border the colour of the borders, by default identical to col

text if there are different groups, whether to add a number above each of them to
distinguish them

labels the labels to put on top of each group

t a list of parameters to feed text()

add whether to add the plot to a preexisting plot

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5) + t * 0.01

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec <- extricate(xy, dt, nimf = 7, sifting = 10,
repl = 10, comb = 10, factor_noise = 10,
speak = FALSE)

plot_imf 49

Not run:
plot_emd(dec, dir = tempdir())
End(Not run)

integrity(xy, dec)
parsimony(dec)

ht <- inst.pulse(dec, plot = FALSE)

opar <- par('mfrow')

par(mfrow = c(2,1))

plot_hist(x = 1/ht$f, breaks = 500,
xlog = TRUE, xlab = "Period")

plot_hist(x = 1/ht$f, breaks = 500, id = ht$mode,
xlog = TRUE, text = TRUE, add = TRUE, line = TRUE, pile = FALSE)

abline(v = c(p1, p2), col = "red", lwd = 2, lty = 5)

plot_hist(x = 1/ht$f, breaks = 500, id = ht$mode,
xlog = TRUE, text = TRUE, xlab = "Period")

abline(v = c(p1, p2), col = "red", lwd = 2, lty = 5)

par(mfrow = opar)

plot_imf Plot IMFs characteristics

Description

General plot for the envelope, instantaneous frequency (period) and identity tuning of an intrinsic
mode function (IMF)

Usage

plot_imf(
pulse,
dtlim = NULL,
xylim = NULL,
flim = NULL,
fclim = NULL,
dtline = NULL,
fline = NULL,
fcline = NULL,
vertical = FALSE,

50 plot_imf

n = 10,
at.maj = NULL,
ls = list(type = "o", pch = 19),
le1 = list(lwd = 2),
le2 = list(lty = 2),
lid = list(type = "p", pch = 19),
lcos = list(),
ldt = list(lty = 5, lwd = 2),
lf = list(lty = 5),
lfc = list(lty = 5),
box = TRUE

)

Arguments

pulse a pulse object
dtlim, xylim, flim, fclim

the boundaries for the plots, respectively for the depth/time, amplitude, fre-
quency and freqeuncy carrier

dtline, fline, fcline
coordinates to add vertical/horizontal lines

vertical whether to have the depth/time [dt] axis vertically

n the the number of intervals defined by minor ticks (geologist convention) or
horizontaly (climatologist convention)

at.maj the positions at which major tick-marks are to be drawn.
ls, le1, le2, lid, lcos

lists of parameters to feed lines, for the original signal, the upper and lower
envelope, the identity tuning, and the cosine line in the identity tuning

ldt, lf, lfc lists of parameters to provide the abline function (makes personalised lines for
you to have a better grasp of the data).

box whether to draw boxes around the plots

Details

the line in the identity tuning plot is a genuine cosine, independent from the signal. This is evident
when riding waves generate dephasing.

Examples

n <- 600

t <- seq_len(n)

p1 <- 30
p2 <- 40 * 21

am <- sin(t*2*pi/p2 + 50) + 0.03

plot_pulse 51

xy <- sin(t*2*pi/p1 + 50) * 3 * am

int <- c(rep(1, 99 + 100), seq(1,3,2/100), seq(3,1,-2/100), rep(1,100 + 99))

dt <- cumsum(int)

samp <- approx(dt, xy, xout = seq(1,802, by = 2))

xy <- samp$y
dt <- samp$x

e <- normalise(m = xy, dt = dt)$a

cond <- dt < 75

xy <- xy[!cond]
dt <- (dt[!cond] - 75) / 1.2
e <- e[!cond]

dq <- dq.algorithm(xy/e, dt)

pulse <- as.pulse(dt = dt, m = xy, f = dq$f, a = e, idt = dq$idt,
repl = 1)

plot_imf(pulse, fline = 25, dtline = c(222, 489))

plot_pulse Visualise the instantaneous frequencies and amplitudes of a decompo-
sition

Description

Visualise the instantaneous frequencies and amplitudes of a decomposition

Usage

plot_pulse(
pulse,
style = "b",
breaks = 500,
bins = 100,
cut = 18,
lines = NULL,
keep = NULL,
lose = NULL

)

52 plot_ratio

Arguments

pulse a pulse object (created by inst.pulse or as.pulse)
style whether to plot the distribution of frequency (’d’), the spectral population (’p’)

or both (’b’, is the default)
breaks, bins, cut

parameter for the plots: breaks is fed to plot_hist, bins is fed to plot_hex,
and cut defines the number of color cuts for plot_hex. For better control use
plot_hist and plot_hex directly.

lines the period of lines to be added to the plots for better visualisation
keep, lose which modes to plot or to not (keep overrides lose)

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5) + t * 0.01

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)
dec <- extricate(xy, dt, nimf = 7, sifting = 10, repl = 10, comb = 10,

factor_noise = 10, speak = TRUE)

Not run:
plot_emd(dec, dir = tempdir())
End(Not run)

integrity(xy, dec)
parsimony(dec)

ht <- inst.pulse(dec, plot = FALSE)

plot_pulse(ht, lines = c(30, 240))

plot_ratio Visualise the instantaneous frequencies ratios of a decomposition

Description

Visualise the instantaneous frequencies ratios of a decomposition

plot_ratio 53

Usage

plot_ratio(
ratio,
sqrt.rpwr = TRUE,
style = "b",
select = NA,
bins = 100,
cut = 18,
lines = NULL,
plot = TRUE,
width = 10,
height = 10,
name = "Ratio",
ext = ".pdf",
dir = tempdir(),
track = TRUE,
openfile = TRUE

)

Arguments

ratio a ratio object (created by inst.ratio

sqrt.rpwr whether to use the square root of ratio power (i.e. the square root of the multi-
plication of the instantaneous amplitudes of the modes two by two) rather than
the ratio power itself.

style whether to plot a single plot in the graphics device (’s’), the to plot an ensemble
of all the ratios combinations in a pdf (’e’), or both (’b’, is the default)

select the groups of ratios combinations to plot in the single plot (in the "1/2" form)

bins, cut parameter for the plots: bins is fed to plot_hex, and cut defines the number of
color cuts for plot_hex. For better control use plot_hex directly.

lines the ratio of lines to be added to the plots for better visualisation

plot whether to plot. Otherwise output a grob of the single plot.

width, height the width and height in inches of each separate plot in the ensemble of all the
ratios combinations

name, ext, dir, track, openfile
parameters for the pdfDisplay function, namely the name of the pdf file, its
extension (if you want to make a .svg file you can), the directory of the file,
whether to track the changes (if you use sumatrapdf as a default pdf reader you
can set it to F and it will avoid creating too many pdf files), and whether to
directly open the file

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

54 PrecisionTester

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5) + t * 0.01

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)
dec <- extricate(xy, dt, nimf = 7, sifting = 10,

repl = 10, comb = 10,
factor_noise = 10, speak = TRUE)

Not run:
plot_emd(dec, dir = tempdir())
End(Not run)

integrity(xy, dec)
parsimony(dec)

ht <- inst.pulse(dec, plot = FALSE)
ratio <- inst.ratio(ht, plot = FALSE)

plot_ratio(ratio, lines = c(8), style = "s")
plot_ratio(ratio, lines = c(8), style = "s", select = c("4/6"))
Not run:
plot_ratio(ratio, lines = c(8), style = "e", dir = tempdir())
End(Not run)

PrecisionTester Test numerically determined instantaneous frequency against exact in-
stantaneous frequency

Description

This function compares the performance of InstantaneousFrequency against signals of known
instantaneous frequency. The known signal is of the form

x(t) = a sin(ω1 + φ1) + b sin(ω2 + φ2) + c

One can create quite complicated signals by choosing the various amplitude, frequency, and phase
constants.

Usage

PrecisionTester(
tt = seq(0, 10, by = 0.01),
method = "arctan",

PrecisionTester 55

lag = 1,
a = 1,
b = 1,
c = 1,
omega.1 = 2 * pi,
omega.2 = 4 * pi,
phi.1 = 0,
phi.2 = pi/6,
plot.signal = TRUE,
plot.instfreq = TRUE,
plot.error = TRUE,
new.device = TRUE,
...

)

Arguments

tt Sample times.

method How the numeric instantaneous frequency is calculated, see InstantaneousFrequency

lag Differentiation lag, see the diff function in the base package

a Amplitude coefficient for the first sinusoid.

b Amplitude coefficient for the second sinusoid.

c DC shift

omega.1 Frequency of the first sinusoid.

omega.2 Frequency of the second sinusoid.

phi.1 Phase shift of the first sinusoid.

phi.2 Phase shift of the second sinusoid.

plot.signal Whether to show the time series.

plot.instfreq Whether to show the instantaneous frequencies, comparing the numerical and
analytical result.

plot.error Whether to show the difference between the numerical and analytical result.

new.device Whether to open each plot as a new plot window (defaults to TRUE). How-
ever, Sweave doesn’t like dev.new(). If you want to use PrecisionTester in
Sweave, be sure that new.device = FALSE

... Plotting parameters

Value

instfreq$sig The time series
instfreq$analytic

The exact instantaneous frequency
instfreq$numeric

The numerically-derived instantaneous frequency from InstantaneousFrequency

56 PrecisionTester

Author(s)

Daniel C. Bowman (in the hht package)

See Also

InstantaneousFrequency

Examples

#Simple signal

tt <- seq(0, 10, by = 0.01)
a <- 1
b <- 0
c <- 0
omega.1 <- 30 * pi
omega.2 <- 0
phi.1 <- 0
phi.2 <- 0

PrecisionTester(tt, method = "arctan", lag = 1, a, b, c,
omega.1, omega.2, phi.1, phi.2, new.device = FALSE)

#That was nice - what happens if we use the "chain" method...?

PrecisionTester(tt, method = "chain", lag = 1, a, b, c,
omega.1, omega.2, phi.1, phi.2, new.device = FALSE)

#Big problems! Let's increase the sample rate

tt <- seq(0, 10, by = 0.0005)
PrecisionTester(tt, method = "chain", lag = 1, a, b, c,

omega.1, omega.2, phi.1, phi.2, new.device = FALSE)

#That's better

#Frequency modulations caused by signal that is not symmetric about 0

tt <- seq(0, 10, by = 0.01)
a <- 1
b <- 0
c <- 0.25
omega.1 <- 2 * pi
omega.2 <- 0
phi.1 <- 0
phi.2 <- 0

PrecisionTester(tt, method = "arctan", lag = 1, a, b, c,
omega.1, omega.2, phi.1, phi.2, new.device = FALSE)

#Non-uniform sample rate
set.seed(628)

ratios 57

tt <- sort(runif(500, 0, 10))
a <- 1
b <- 0
c <- 0
omega.1 <- 2 * pi
omega.2 <- 0
phi.1 <- 0
phi.2 <- 0

PrecisionTester(tt, method = "arctan", lag = 1, a, b, c,
omega.1, omega.2, phi.1, phi.2, new.device = FALSE)

ratios Computes ratios of numerical values

Description

Computes ratios of numerical values

Usage

ratios(x)

Arguments

x values to compute the ratio from

Value

a dataframe of $ratio, $x1 and $x2

Examples

ratios(c(20,40,100,400))

repl.out Remove / Bind replicates in emd objects

Description

Remove / Bind replicates in emd objects

Usage

repl.out(emd, keep = NULL, lose = NULL, reorder = FALSE)

repl.bind(emd, comb)

58 respace

Arguments

emd emd-type object

keep, lose the modes to keep or lose

reorder whether to reinitialise the index of replicates when suppressing one

comb the number of replicates that have to be bound together

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5) + t * 0.01

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec <- extricate(xy, dt, nimf = 7, sifting = 10,
repl = 20, comb = 2, factor_noise = 10,
speak = TRUE, output_sifting = TRUE)

reduced <- repl.out(dec, keep = c(3,4))

parsimony(reduced)

plot_emd(reduced, pdf = FALSE, select = c(4,6))

combined <- repl.bind(dec, 10)

parsimony(combined)

plot_emd(combined, pdf = FALSE, select = c(4,6))

respace Interpolate with even spacing

Description

Interpolate with even spacing. Can determine on its own the most conservative sampling interval
(using the Greatest Common Rational Divisor)

respace 59

Usage

respace(
dt,
xy = NULL,
delta = NULL,
tolerance = 8,
relative = TRUE,
n.warn = 100

)

Arguments

dt depth/time (same length than length/rows of xy)

xy signal (vector or matrix)

delta the new sampling interval. If NULL, uses the Greatest Common Rational Divi-
sor

tolerance, relative
parameters for the divisor function (StratigrapheR package), to compute the
Greatest Common Rational Divisor

n.warn the amount of interpolated points in between the largest interval above which
a warning is provided. This warning can be useful to avoid needlessly long
outputs, which might make any subsequent computation take too much time.

Value

a list of interpolated xy and dt values ($xy and $dt), plus a vector of logicals indicating whether
each point was part of the initial input or was added by interpolation

Examples

set.seed(42)

n <- 50
t <- seq_len(n)

xy <- (1 + 0.6 * sin(t*0.025)) * sin(t*0.2) + 2 * sin(t*0.025) +
rnorm(n, sd = 0.5)

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5), 1)

dt <- cumsum(inter_dt)

res <- respace(xy = xy, dt = dt)

opar <- par("mfrow")

par(mfrow = c(1,1))

plot(resxy, resdt, type = "l")

60 simp.emd

points(res$xy[res$initial], res$dt[res$initial], pch = 19, col = "green")
points(res$xy[!res$initial], res$dt[!res$initial],

pch = 19, col = "red", cex = 0.5)

par(mfrow = opar)

simp.emd Simplifies the components of an EMD

Description

Simplifies the component of an EMD to only extremas and zero-crossings, and outputs problematic
extrema: multiple extrema (extrema not separated by zero-crossings) and crossing extrema (extrema
at zero).

Usage

simp.emd(emd = NULL, m = NULL, dt = NULL, repl = 1, use.names = FALSE)

Arguments

emd emd-type object

m a matrix of the amplitude values (xy) of the components, each column being
a component. Each column should have the same number of non NA values.
Vectors, for 1 component, are accepted. Is overridden by emd.

dt the depth or time value. Is overridden by emd.

repl the amount of replicates in m. Is overridden by emd.

use.names whether to use the column names to identify problematic extrema

Value

a list of the depth or time values ($dt) of the simplified IMF (Intrinsic Mode Function), of their
amplitude ($xy), and of the position and component of problematic multiple extrema ($multi-
ple_extrema) and crossing extrema ($crossing_extrema)

Examples

xytest <- c(0.5, 1,-1,-0.85,-0.5,-1,-0.5,-1,1,0.5,0,0,
1,-1,0,1,2,-2,1,2,1,3,0,-1,-1,3,0)

repeatafterme <- 2

m <- matrix(rep(xytest,repeatafterme), ncol = repeatafterme)
dt <- 1:length(xytest)

res <- simp.emd(m = m, dt = dt, repl = repeatafterme)

simple.ssa 61

opar <- par("mfrow")

par(mfrow = c(1,1))

plot(dt, xytest, type = "o", pch = 19)
abline(h = 0, col = "grey")

me <- res$multiple_extrema$dt[res$multiple_extrema$repl == 1]
ce <- res$crossing_extrema$dt[res$multiple_extrema$repl == 1]

abline(v = me, col = "orange")
abline(v = ce, col = "darkred")

points(res$dt[,1], res$xy[,1], col = "red", pch = 19)

par(mfrow = opar)

simple.ssa Simple SSA decomposition

Description

Simple wrapper for Singular Spectrum Analysis, using the functions of the Rssa package (which
is not installed by default by the DecomposeR package, you should install it independently). This
function allows unevenly sampled data.

Usage

simple.ssa(xy, dt, n = 10, remove = "trend", groups = list(), plot = T, ...)

Arguments

xy signal to be decomposed

dt depth/time

n maximum amount of components

remove whether to remove a linear trend ("trend", is the default), a mean value ("mean"),
or to decompose as is (any other value)

groups which components to regroup (list of the indices of elementary components to
be regrouped, the entries of the list can be named, see the reconstruct() function
in the Rssa package for more information)

plot whether to show a visualisation of the importance of each component

... any arguments to by given to the ssa() function (see Rssa package for more
information)

62 symmetry

Value

a list made of $xy (original signal), $dt (depth/time), $m (a matrix of the decomposition), $repl (the
replicate id of each point) and $mode (the mode id of each point).

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5) + 0.01 * t

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

res <- simple.ssa(xy, dt, groups = list(c(1,2), c= 3:10))

parsimony(res)

integrity(xy, res)

Not run:
plot_emd(res, style = 1)
End(Not run)

symmetry Symmetry of components

Description

The function returns the highest factor of amplitude either in negative or positive values. This
quantifies the symmetry of components.

Usage

symmetry(xy, names = "num")

Arguments

xy signal (vector or matrix)
names the names to use for the resulting vector. If NULL no names are provided, if NA

its the names of the columns of the xy matrix, if "num" it the column index of
the matrix xy

symmetry 63

Examples

set.seed(42)

n <- 600
t <- seq_len(n)

p1 <- 30
p2 <- 240

xy <- (1 + 0.6 * sin(t*2*pi/p2)) * sin(t*2*pi/p1) + 2 * sin(t*2*pi/p2) +
rnorm(n, sd = 0.5) + t * 0.01

inter_dt <- round(runif(length(xy), min = 0.5, max = 1.5),1)

dt <- cumsum(inter_dt)

dec <- extricate(xy, dt, nimf = 7, sifting = 10,
repl = 1, comb = 40, factor_noise = 10,
speak = TRUE, output_sifting = TRUE)

symmetry(dec$m)

plot_emd(dec, select = c(6,8,9), pdf = FALSE, adapt.axis = TRUE)

Index

ace (DecomposeR.Datasets), 10
approx.cor, 3
as.emd, 4, 7
as.pulse, 6, 52

check.emd, 7
cip1 (DecomposeR.Datasets), 10
cip1_input (DecomposeR.Datasets), 10
cip1_raw (DecomposeR.Datasets), 10
cip2 (DecomposeR.Datasets), 10
cip3 (DecomposeR.Datasets), 10
condense, 8

DecomposeR, 9
DecomposeR.Datasets, 10
dq.algorithm, 11

extremist, 12, 32
extricate, 13

gzc, 16, 19
gzc.algorithm, 16, 17, 18
gzc.departure, 19

HilbertEnvelope, 21, 22
HilbertTransform, 21, 22, 27
hist, 47

inst.pulse, 23, 52
inst.ratio, 25, 53
InstantaneousFrequency, 21, 22, 27, 54–56
integrity, 28
is.emd (as.emd), 4
is.pulse (as.pulse), 6
is.ratio, 29
is.simp.emd, 30

La04_ecc_6_8 (DecomposeR.Datasets), 10
La04_obl_6_8 (DecomposeR.Datasets), 10
La04_pre_0_20 (DecomposeR.Datasets), 10

La04_pre_obl_5_9 (DecomposeR.Datasets),
10

log10, 45

mode.bind (mode.in), 30
mode.in, 30
mode.out (mode.in), 30

n.extrema, 32
normalise, 33
normalize (normalise), 33

oscillate, 35

parsimony, 36
pdfDisplay, 26
pile.down, 38
pile.up, 38, 39
plot_emd, 41
plot_hex, 24, 43, 52, 53
plot_hist, 24, 47, 52
plot_imf, 49
plot_pulse, 51
plot_ratio, 26, 52
PrecisionTester, 27, 54

ratios, 57
repl.bind (repl.out), 57
repl.out, 57
respace, 24, 58
runif, 15

sc97amp (DecomposeR.Datasets), 10
simp.emd, 60
simple.ssa, 61
symmetry, 62

w17 (DecomposeR.Datasets), 10

z13 (DecomposeR.Datasets), 10
z13amp (DecomposeR.Datasets), 10

64

	approx.cor
	as.emd
	as.pulse
	check.emd
	condense
	DecomposeR
	DecomposeR.Datasets
	dq.algorithm
	extremist
	extricate
	gzc
	gzc.algorithm
	gzc.departure
	HilbertEnvelope
	HilbertTransform
	inst.pulse
	inst.ratio
	InstantaneousFrequency
	integrity
	is.ratio
	is.simp.emd
	mode.in
	n.extrema
	normalise
	oscillate
	parsimony
	pile.down
	pile.up
	plot_emd
	plot_hex
	plot_hist
	plot_imf
	plot_pulse
	plot_ratio
	PrecisionTester
	ratios
	repl.out
	respace
	simp.emd
	simple.ssa
	symmetry
	Index

